Validating Placement Systems in a Post-AB 705 World

Terrence Willett, M.S.

California Community College Assessment Association NORTHERN CHAPTER CONFERENCE Thursday, December 7, 2017

Santa Rosa Junior College (Host)
Agenda

• What is AB 705?
• Accessing & Using High School Performance Data
• Self-reported Data & Durability of GPA
• Complying with AB 705
• Throughput and Validation of Placement Systems
• Discussion & Workshop
AB 705 (Irwin) requirements

• Use of high school performance data
• Use of “Highly unlikely” standard
• Optimize student’s probability of completing transfer-level English and math* in their first year

*Or intermediate algebra if that is the graduation requirement for the student’s program of study or educational goal
How are you currently using high school data for placement?

A. MMAP decision rules place students in addition to our test placement rules.
B. We use rules that are similar to MMAP decision rules but with locally determined GPA or coursework values.
C. High school performance data to add or subtract points to the placement test score.
D. We require a certain course grade or GPA before students can be placed in certain levels, regardless of test score.
E. We are not really using high school performance data in our placement process.
F. Other
What likelihood range is consistent with the term "highly unlikely"?

A. From 40% to 49%
B. From 30% to 39%
C. From 20% to 29%
D. From 10% to 19%
E. From 0% to 9%
The Models: Multiple Measures Assessment Project MMAP
Data Set for the Models

• CCC students enrolled in an English, Math, Reading or ESL class with matching high school data in Cal-PASS Plus
 • ≈1 M cases for Math & English; ≈200k for Reading & ESL

• Bulk of first CCC enrollments from 2008 through 2014
• Rules used students with 4 years of high school data (≈25% of sample)
• Used rpart, a machine learning algorithm, to create decision trees

• MMAP code
• R4IR Tutorial https://drive.google.com/drive/folders/0Bz-jqwGzLQjJajA5YUIxUjdETzA?usp=sharing
Variables Explored in the Models

- High School Unweighted Cumulative GPA
- Grades in high school courses
- CST scores
- Advanced Placement course taking
- Taking higher level courses (math)
- Delay between HS and CCC (math)
- HS English types (expository, remedial, ESL)
- HS Math level (Elem Algebra, Integrated Algebra, Pre-Calculus)
Transfer-Level Placement Recommendations

<table>
<thead>
<tr>
<th>Transfer Level Course</th>
<th>Direct Matriculant</th>
<th>Non-Direct Matriculant</th>
</tr>
</thead>
<tbody>
<tr>
<td>College Algebra (STEM)</td>
<td>HS 11 GPA >=3.2 OR</td>
<td>HS 12 GPA >=3.2 OR</td>
</tr>
<tr>
<td>Passed Algebra II (or better)</td>
<td>HS 11 GPA >=2.9 AND Pre-Calculus C (or better)</td>
<td>HS 12 GPA >=3.0 AND Pre-Calculus or Statistics (C or better)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics (General Education/Liberal Arts)</td>
<td>HS 11 GPA >=3.0 OR</td>
<td>HS 12 GPA >=3.0 OR</td>
</tr>
<tr>
<td>Passed Algebra I (or better)</td>
<td>HS 11 GPA >=2.3 AND Pre-Calculus C (or better)</td>
<td>HS 12 GPA >=2.6 AND Pre-Calculus (C or better)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>HS 11 GPA >=2.6</td>
<td>HS 12 GPA >=2.6</td>
</tr>
</tbody>
</table>

ESL Findings

• Most HS ESL go into CC English (87%)
• Most Credit ESL students do not come from Non-Credit (99%)
• High School origin does not generally relate to college outcomes
• Multiple measures for ESL will benefit from extra questions on application
Intra-Class Correlations (ICC) Between Grade Points in First Community College ESL Course and High School Origin and College Destination by Highest Level of ESL Offered

<table>
<thead>
<tr>
<th>Highest Level of ESL at Community College</th>
<th>Level of First ESL Course</th>
<th>High School Origin</th>
<th>College Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer-Level</td>
<td>Transfer-level</td>
<td>0.03</td>
<td>0.05**</td>
</tr>
<tr>
<td>485 high schools</td>
<td>1 level below transfer</td>
<td>0.03**</td>
<td>0.01</td>
</tr>
<tr>
<td>41 colleges</td>
<td>2 levels below transfer</td>
<td>0.05*</td>
<td>0.03**</td>
</tr>
<tr>
<td>One Level Below Transfer-</td>
<td>1 level below transfer</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Level</td>
<td>2 levels below transfer</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>289 high schools</td>
<td>3 levels below transfer</td>
<td>0.04</td>
<td>0.05**</td>
</tr>
<tr>
<td>30 colleges</td>
<td>Two Levels Below Transfer-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>2 levels below transfer</td>
<td>0.05</td>
<td>0.07**</td>
</tr>
<tr>
<td>253 high schools</td>
<td>3 levels below transfer</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>27 colleges</td>
<td>4 levels below transfer</td>
<td>0.27**</td>
<td>0.09</td>
</tr>
</tbody>
</table>

*significant at 0.05 level; **significant at 0.01 level
Results from the Field
Pilot Summary

– MMAP rules performing as expected
– Placement messaging should be done once with a single voice and specifically state the recommended course
– Implementation of MMAP rules is nuanced
 • For example, don’t use statistics rules to place into calculus
– MMAP started new conversations within and across departments and services
– Collaboration between high schools and colleges has increased
Success Rates in Transfer-level English

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sierra, 2014F</td>
<td>73%</td>
<td>68%</td>
<td>60%</td>
<td>69%</td>
<td>65%</td>
<td>68%</td>
<td>80%</td>
</tr>
<tr>
<td>Shasta, 2015S</td>
<td>68%</td>
<td>67%</td>
<td>63%</td>
<td>69%</td>
<td>65%</td>
<td>68%</td>
<td>80%</td>
</tr>
<tr>
<td>San Diego CCD, 2015F</td>
<td>60%</td>
<td>63%</td>
<td>79%</td>
<td>69%</td>
<td>65%</td>
<td>68%</td>
<td>80%</td>
</tr>
<tr>
<td>Norco, 2016F</td>
<td>69%</td>
<td>69%</td>
<td>79%</td>
<td>69%</td>
<td>65%</td>
<td>68%</td>
<td>80%</td>
</tr>
<tr>
<td>MiraCosta, 2016S</td>
<td>65%</td>
<td>67%</td>
<td>79%</td>
<td>69%</td>
<td>65%</td>
<td>68%</td>
<td>80%</td>
</tr>
<tr>
<td>MiraCosta, 2016F</td>
<td>68%</td>
<td>69%</td>
<td>79%</td>
<td>69%</td>
<td>65%</td>
<td>68%</td>
<td>80%</td>
</tr>
<tr>
<td>Merritt, 2015M-2016S</td>
<td>50%</td>
<td>56%</td>
<td>75%</td>
<td>77%</td>
<td>75%</td>
<td>77%</td>
<td>75%</td>
</tr>
<tr>
<td>Las Positas, 2016F</td>
<td>75%</td>
<td>77%</td>
<td>76%</td>
<td>71%</td>
<td>77%</td>
<td>85%</td>
<td>78%</td>
</tr>
<tr>
<td>Laney, 2015M-2016S</td>
<td>76%</td>
<td>76%</td>
<td>76%</td>
<td>71%</td>
<td>77%</td>
<td>85%</td>
<td>78%</td>
</tr>
<tr>
<td>Irvine Valley, 2016F</td>
<td>77%</td>
<td>77%</td>
<td>78%</td>
<td>76%</td>
<td>77%</td>
<td>85%</td>
<td>78%</td>
</tr>
<tr>
<td>College of Alameda, 2015M-2016S</td>
<td>78%</td>
<td>78%</td>
<td>78%</td>
<td>76%</td>
<td>77%</td>
<td>85%</td>
<td>78%</td>
</tr>
<tr>
<td>Canada, 2014F/2015F</td>
<td>76%</td>
<td>72%</td>
<td>72%</td>
<td>72%</td>
<td>72%</td>
<td>72%</td>
<td>72%</td>
</tr>
<tr>
<td>Berkeley, 2015M-2016S</td>
<td>62%</td>
<td>73%</td>
<td>73%</td>
<td>73%</td>
<td>73%</td>
<td>73%</td>
<td>73%</td>
</tr>
</tbody>
</table>

Success Rates in Transfer-level Math

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>San Diego CCD, 2015F</td>
<td>60%</td>
<td>58%</td>
<td>69%</td>
<td>71%</td>
<td>71%</td>
<td>71%</td>
</tr>
<tr>
<td>Merritt, 2015M-2016S</td>
<td>59%</td>
<td>69%</td>
<td>75%</td>
<td>77%</td>
<td>75%</td>
<td>77%</td>
</tr>
<tr>
<td>Norco, 2016F</td>
<td>69%</td>
<td>69%</td>
<td>75%</td>
<td>77%</td>
<td>75%</td>
<td>77%</td>
</tr>
<tr>
<td>Laney, 2015M-2016S</td>
<td>75%</td>
<td>76%</td>
<td>75%</td>
<td>77%</td>
<td>76%</td>
<td>77%</td>
</tr>
<tr>
<td>College of Alameda, 2015M-2016S</td>
<td>76%</td>
<td>76%</td>
<td>76%</td>
<td>76%</td>
<td>76%</td>
<td>76%</td>
</tr>
<tr>
<td>Canada, 2014F/2015F</td>
<td>76%</td>
<td>72%</td>
<td>76%</td>
<td>72%</td>
<td>76%</td>
<td>72%</td>
</tr>
<tr>
<td>Berkeley, 2015M-2016S</td>
<td>76%</td>
<td>62%</td>
<td>73%</td>
<td>73%</td>
<td>73%</td>
<td>73%</td>
</tr>
</tbody>
</table>

"Under our previous policies, African American and Latino students were far less likely to place into transfer-level math. Under the new policies, African American students' access to transfer-level math increased eight-fold, Latino students' access increased four-fold, and the disproportionate impact in placement was eliminated for all racial groups."
— Bakersfield College

"There are thousands of reasons to do this; each one has a name."
— Bakersfield College

"MMAP is a COMPLETION initiative, not a SUCCESS initiative."
— Santa Monica College

"Cuyamaca College"
Manual process

Transcript review, at least partly manual
Testing Process (Ohlone)

Research:
• Upload student applications to Cal-PASS
 – Applying MMAP to grads <5 years
• Generate a file to load into Accuplacer

Assessment Specialist:
• Loads file to Accuplacer using Student pre-registration under Student vouchers
• Enter data for students who were not preloaded
MMAP Petition (Ohlone)

High School Transcript

Overall High School GPA: 2.2
- [] weighted
- [] unweighted
- [] undetermined

Transcript Grade level:
- Completed 12th grade
 - IM 2/Alg 2
 - B
 - C+

Multiple Measures Course Placements for English and/or Math

- English Placement: 1104 - ENGL 151B
- Math Placement: 2101 - Math 190/191/192
- Reading Placement: 3104 - ENGL-163
Imperial Valley College
Challenges in Implementation

• Low participation in CalPass Plus
• No electronic transcript system in place
• Little awareness of MMAP campus-wide
• Limited IR Staff
• “Our students are different” and dealing with skepticism
Imperial Valley Recommendations

• Promote MMAP awareness campus-wide
 – Involve IT, IR, SSSP, Faculty, Enrollment Management and Counseling
 – Share Data!
• Work with local high schools
 – Form articulation agreements, dual-enrollment, etc.
 – Report back to your feeder schools
• Training with IT and SSSP/Assessment on record keeping
• Training with Counselors on interpreting recommendations
MMAP Placement Matrix

Direct Matriculant (up through 11th grade transcript available)

<table>
<thead>
<tr>
<th>Highest math course taken in high school</th>
<th>GPA ≥ 3.6</th>
<th>GPA ≥ 3.4</th>
<th>GPA ≥ 3.3</th>
<th>GPA ≥ 3.2</th>
<th>GPA ≥ 3.0</th>
<th>GPA ≥ 2.9</th>
<th>GPA ≥ 2.8</th>
<th>GPA ≥ 2.6</th>
<th>GPA ≥ 2.4</th>
<th>GPA ≥ 2.3</th>
<th>GPA ≥ 2.0</th>
<th>GPA < 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus 1 (C or better)</td>
<td>Calc</td>
<td>Calc</td>
<td>Calc</td>
<td>Calc</td>
<td>Pre-CalC</td>
<td>Pre-CalC</td>
<td>Pre-CalC</td>
<td>Pre-CalC</td>
<td>Stats</td>
<td>Stats</td>
<td>Pre-Alg</td>
<td>Test</td>
</tr>
<tr>
<td>Calculus 1 (enrolled)</td>
<td>Calc</td>
<td>Calc</td>
<td>Calc</td>
<td>Calc</td>
<td>Pre-CalC</td>
<td>Pre-CalC</td>
<td>Pre-CalC</td>
<td>Pre-CalC</td>
<td>Stats</td>
<td>Stats</td>
<td>Pre-Alg</td>
<td>Test</td>
</tr>
<tr>
<td>Pre-Calculus (C or better)</td>
<td>Calc</td>
<td>Calc</td>
<td>Calc</td>
<td>Calc</td>
<td>Trig</td>
<td>Col Alg</td>
<td>Stats</td>
<td>Stats</td>
<td>Stats</td>
<td>Stats</td>
<td>Pre-Alg</td>
<td>Test</td>
</tr>
<tr>
<td>Pre-Calculus (C or better)</td>
<td>Calc</td>
<td>Calc</td>
<td>Calc</td>
<td>Calc</td>
<td>Trig</td>
<td>Col Alg</td>
<td>Stats</td>
<td>Stats</td>
<td>Stats</td>
<td>Stats</td>
<td>Pre-Alg</td>
<td>Test</td>
</tr>
<tr>
<td>Trigonometry (C or better)</td>
<td>Calc</td>
<td>Pre-CalC</td>
<td>Trig</td>
<td>Trig</td>
<td>Trig</td>
<td>Alg 2</td>
<td>Alg 1</td>
<td>Alg 1</td>
<td>Pre-Alg</td>
<td>Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algebra 2 (B or better)</td>
<td>Pre-CalC</td>
<td>Pre-CalC</td>
<td>Trig</td>
<td>Trig</td>
<td>Trig</td>
<td>Alg 2</td>
<td>Alg 1</td>
<td>Alg 1</td>
<td>Pre-Alg</td>
<td>Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algebra 2 (C or better)</td>
<td>Pre-CalC</td>
<td>Pre-CalC</td>
<td>Col Alg</td>
<td>Col Alg</td>
<td>Stats</td>
<td>Alg 2</td>
<td>Alg 1</td>
<td>Alg 1</td>
<td>Pre-Alg</td>
<td>Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algebra 1 (C or better)</td>
<td>GE Math</td>
<td>GE Math</td>
<td>GE Math</td>
<td>Stats</td>
<td>Stats</td>
<td>Alg 2</td>
<td>Alg 1</td>
<td>Alg 1</td>
<td>Pre-Alg</td>
<td>Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All other</td>
<td>Alg 1</td>
<td>Pre-Alg</td>
<td>Test</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Refers to the total non-weighted GPA. Do not include weighted, academic, term-based, or yearly GPA.
2 Highest math course taken in high school by increasing difficulty.
3 Grade received in course. ‘C or better’ refers to a better grade in course or completion of a higher level course with C or better.
4 Student enrolled in Calculus 1 (no grade requirement).

Local transcript review

- A strategy for students with missing data
 - Can be resource intensive but tools can support use
 - College-developed resources
 - College of Alameda tool and presentation
New Web Services from Cal-PASS Plus

• Current practice: frequent uploads of SFTP files with matching then return with data and placements
• API: real-time matching of data to CPP through data “calls” using a statewide ID for each student
• More secure and removes need to pass files
• What is returned
 – Transcript
 • Used for local Institutions to apply local models
 – Placement
 • Statewide Multiple Measures rules applied to student

Looking for Pilot Colleges to Implement
Full Automation

Ingesting and applying high school performance data automatically
Multiple Measures Pilot Process Flow

(collect MM at Application, calculate Placement at Test Completion – for a Discipline)

1. **Student takes an assessment exam**
2. **Student Assessment Results imported**
3. **Assessment Placement data is persisted**
4. **Disjunctive Logic for Placement is executed**
5. **Student is notified of placement result**
6. **SIS Student Characteristic Placement Source is persisted**
7. **Prereq Token granted when applicable**

We do NOT need to consider whether or not the student is required to matriculate. If they test, check for MMAP Placement.

For the student for the discipline

- **MMAP Placement already exists?**
 - No: **Use Assessment Placement only**
 - Yes: **Retrieve MMAP data**

A PASS data exists for student?

- No: **Use Assessment Placement only**
- Yes: **Retrieve MMAP data**

MMAP Placement process uses only Self-Reported MM data?

- No: **MMAP Placement data is persisted**
- Yes: **Highest placement for the student is considered the student’s final placement for the discipline**

Content is simple: “Your [discipline] placement is now available. Please visit MySite to view your placement information.”

We may need to recalculate the MMAP Placement on the self-reported data. Students reapplying may have conducted activities that support a change in MMAP Placement. There should only be 1 MMAP Placement. This needs to reference to MM data source (Fall 2014 App self-reported MM versus Fall 2011 App self-reported MM).

A student can appeal and get a different MMAP placement. This does not need to be systematized. Matriculation folks can manually set the student’s placement.
Validating placement

It’s all about throughput.
AB 705 IMPLEMENTATION TIMELINE
For Math and English

Fall 2017
- Engage stakeholders regarding current assessment practices including discipline faculty, counselors, institutional research, and assessment staff
- Review the legal requirements of AB 705

Spring 2018
- Strategize ways to make high school data primary in the assessment and placement process
- Begin curricular exploration and development consistent with the law
- Engage professional learning to support curricular shifts in math, English, or ESL

Fall 2018
- Shift local assessment placement practices to include high school data as a primary predictor for all students for spring 2019 placement
- Prepare to shift local assessment/placement rules to new curriculum in spring 2019
- Submit locally developed curriculum changes for approval

Spring 2019
- Approve locally developed curriculum in Math and English
- Connect new assessment/placement rules with curriculum
- Publish new structures in college materials

Fall 2019
- Full compliance with AB 705
Adapting MMAP to AB 705

• MMAP decision trees were based on identifying students who were highly likely to be successful
 – At least 70% probability of success in transfer-level

• Now: Only students who are highly unlikely to succeed at the transfer-level class AND for whom remediation maximizes their probability of throughput can be kept out
What is “throughput rate”?

The probability of getting to and through a gateway course within a specified period of time.

Math throughput rate: The proportion of an entering class that completes their gateway math within one year.

English throughput rate: The proportion of an entering class that completes their gateway English within one year.
Statistics pass/throughput rates

AB 705 Analysis of Pass Rates of Groups of Students in Transfer-level Statistics

<table>
<thead>
<tr>
<th>11th grade GPA < 2.3</th>
<th>11th grade GPA >= 2.3 and C- or worse in Algebra II</th>
<th>11th grade GPA >= 2.3 and C or better in Algebra II</th>
<th>11th grade GPA >= 2.3 and C or better in Pre-Calculus</th>
<th>11th grade GPA >= 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% pass rate</td>
<td>49% pass rate</td>
<td>58% pass rate</td>
<td>70% pass rate</td>
<td>80% pass rate</td>
</tr>
<tr>
<td>~12% of students</td>
<td>~10% of students</td>
<td>12% of students</td>
<td>~4% of students</td>
<td>~62% of students</td>
</tr>
</tbody>
</table>
Statistics pass/throughput rates

One-year Math throughput rate by placement level for students with less than a 2.3 high school GPA

- 40% pass rate
- ~12% of students
Transfer English pass/throughput rates

<table>
<thead>
<tr>
<th>Category</th>
<th>GPA Criteria</th>
<th>Pass Rate</th>
<th>Students</th>
<th>GPA Criteria</th>
<th>Pass Rate</th>
<th>Students</th>
<th>GPA Criteria</th>
<th>Pass Rate</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>11th grade GPA < 1.9</td>
<td>D or worse in 11th grade English</td>
<td>43%</td>
<td>~10%</td>
<td>C- or better in 11th grade English</td>
<td>62%</td>
<td>~23%</td>
<td>C- or better in 11th grade English</td>
<td>80%</td>
<td>~62%</td>
</tr>
<tr>
<td>11th grade GPA >= 1.9</td>
<td>D or worse in 11th grade English</td>
<td>49%</td>
<td>~5%</td>
<td>C- or better in 11th grade English</td>
<td>62%</td>
<td>~23%</td>
<td>C- or better in 11th grade English</td>
<td>80%</td>
<td>~62%</td>
</tr>
</tbody>
</table>
Optimizing Throughput

One-year English throughput rate by placement level for students with less than a 1.9 high school GPA

- 11th grade GPA < 1.9
 - 43% pass rate
 - ~10% of students

Bar chart:
- Transfer-level: 43%
- One-level below: 13%
- Two-levels below: 2%
- Three-levels below: 0%
- Four-levels below: 0%
40% pass rate? Are you serious?

- While we may not be happy with a 40% probability of passing a transfer-level course, it represents students’ best shot at making it through the transfer-level work.
- Co-requisite remediation is an option that has been used in other states and at Cuyamaca College to increase the pass rates (and throughput) of students with lower probabilities of academic success.
Transfer level placement by year/method in Math at Cuyamaca

- **Asian**
 - Fall 2015: 36%
 - Fall 2016 (STEM): 21%
 - Fall 2016 (STEM + Statistics): 85%

- **African American**
 - Fall 2015: 9%
 - Fall 2016 (STEM): 27%
 - Fall 2016 (STEM + Statistics): 73%

- **Hispanic**
 - Fall 2015: 79%
 - Fall 2016 (STEM): 62%
 - Fall 2016 (STEM + Statistics): 84%

- **White**
 - Fall 2015: 0%
 - Fall 2016 (STEM): 62%
 - Fall 2016 (STEM + Statistics): 84%

- **All**
 - Fall 2015: 90%
 - Fall 2016 (STEM): 62%
 - Fall 2016 (STEM + Statistics): 84%
Gateway momentum in Math at Cuyamaca

Successful completion of transfer-level math before and after change by assessment level

<table>
<thead>
<tr>
<th>Assessment Level</th>
<th>Fall 2013 Cohort</th>
<th>Fall 2016 Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three+ Levels Below</td>
<td>4%</td>
<td>56%</td>
</tr>
<tr>
<td>Two Levels Below</td>
<td>19%</td>
<td>19%</td>
</tr>
<tr>
<td>One Level Below</td>
<td>36%</td>
<td>66%</td>
</tr>
<tr>
<td>All</td>
<td>23%</td>
<td>67%</td>
</tr>
</tbody>
</table>

Successful completion of transfer-level math before and after change by ethnicity

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Fall 2013 Cohort</th>
<th>Fall 2016 Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asian</td>
<td>33%</td>
<td>75%</td>
</tr>
<tr>
<td>African American</td>
<td>6%</td>
<td>55%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>15%</td>
<td>65%</td>
</tr>
<tr>
<td>White</td>
<td>16%</td>
<td>76%</td>
</tr>
<tr>
<td>All</td>
<td>15%</td>
<td>69%</td>
</tr>
</tbody>
</table>
Self-Reported Transcript Data
Is your college collecting self-reported high school performance data via CCCApply?

• Yes
• No
• Not sure
Self-reported high school transcript data

• 69 community colleges are now collecting self-reported data through Open CCCApply
 – includes a mix of pilot and non-pilot colleges

• The team is currently trying to get access to these data to analyze the validity of self-reported data.
 – preliminary data from the pilot colleges shows self-reported transcript data reliably portrays transcript data
Preliminary Self-Report Data

• Overall strong correlation between self-reported high school GPA and actual GPA observed: \(r = 0.707 \) (n=12,048).

• Students with lower overall GPA somewhat less likely to report accurately

• Correspondence could be improved by
 – encouraging students to bring/consult transcripts at beginning of application and/or
 – making clear that inaccurate information could invalidate application
 • (though it would rarely be in college’s or student’s best interest for college to follow through on that threat).
Durability of GPA

The decay function of the predictive validity of high school GPA
Decay function of the predictive validity of high school GPA: Math

Delay between High School Graduation and College Entry

- Predictive validity
- Average Accuplacer Predictive Validity

Correlation of HS GPA with CC Math Grade

Decay function of the predictive validity of HSGPA for success in first community college math class - Overall

0.33 0.32 0.27 0.22 0.23 0.23 0.20 0.23 0.15 0.29 0.27
Decay function of the predictive validity of high school GPA: English

Decay function of the predictive validity of HSGPA for success in first community college English class

Correlation of HS GPA with CC English Grade

Delay between High School Graduation and College Entry

- 0 Years Delay
- 1 Year Delay
- 2 Years Delay
- 3 Years Delay
- 4 Years Delay
- 5 Years Delay
- 6 Years Delay
- 7 Years Delay
- 8 Years Delay
- 9 Years Delay
- 10+ Years Delay

High School GPA

Average Accuplacer Predictive Validity

0.33
0.33
0.28
0.24
0.22
0.21
0.21
0.21
0.19
0.19
0.14
0.13
Types of Validity

• Face Validity
 – does it appear valid to the reasonable person
• Content Validity
 – Does the content of the measure relate construct
• Criterion Validity
 – Concurrent Validity = “status quo at a particular time”
 – Predictive Validity = measure that predicts later outcome
Questions?
Discussion & Workshop

- Do any of your developmental courses have a throughput rate that is greater than 40%?
- How does AB 705 change the landscape for assessment and placement? What about disproportionate impact?
- How will your college comply with AB 705?
- What is valid?
Example of workshop exercise

<table>
<thead>
<tr>
<th>First Enrollment in Remedial Course</th>
<th>% of Students Who Successfully Complete College-Level Course</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>English</td>
</tr>
<tr>
<td>1 level below transfer</td>
<td>48%</td>
</tr>
<tr>
<td>2 levels below transfer</td>
<td>34%</td>
</tr>
<tr>
<td>3 levels below transfer</td>
<td>19%</td>
</tr>
</tbody>
</table>

Cuyamaca College: Basic Skills Cohort Tracker, fall 2009 through spring 2012
Basic Skills Cohort Progress Tracker
Results from Southern Conference

One-year throughput rates for all students starting at one-level below

<table>
<thead>
<tr>
<th>College</th>
<th>English</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crafton</td>
<td>42%</td>
<td>0%</td>
</tr>
<tr>
<td>RCC</td>
<td>40%</td>
<td>10%</td>
</tr>
<tr>
<td>LA Harbor</td>
<td>43%</td>
<td>20%</td>
</tr>
<tr>
<td>IVC</td>
<td>44%</td>
<td>30%</td>
</tr>
<tr>
<td>Santa Ana</td>
<td>30%</td>
<td>13%</td>
</tr>
<tr>
<td>Fullerton</td>
<td>13%</td>
<td>48%</td>
</tr>
<tr>
<td>Barstow</td>
<td>48%</td>
<td>32%</td>
</tr>
<tr>
<td>Mt. San Jacinto</td>
<td>43%</td>
<td>27%</td>
</tr>
<tr>
<td>LA City</td>
<td>37%</td>
<td>16%</td>
</tr>
</tbody>
</table>
MMAP Research Team

Terrence Willett
The RP Group
twillett@rpgroup.org

Mallory Newell
The RP Group
newellmallory@deanza.edu

Craig Hayward
The RP Group
chayward@rpgroup.org

Loris Fagioli
The RP Group
lfagioli@ivc.edu

Rachel Baker
UC Irvine
rachelbb@uci.edu

Nathan Pellegrin
The RP Group
nathan.pellegrin@gmail.com

Daniel Lamoree
Educational Results Partnership
dlamoree@edresults.org

Peter Bahr
University of Michigan
prbahr@umich.edu

John Hetts
Educational Results Partnership
jhetts@edresults.org

Ken Sorey
Educational Results Partnership
ken@edresults.org